A Submodular-supermodular Procedure with Applications to Discriminative Structure Learning
نویسندگان
چکیده
In this paper, we present an algorithm for minimizing the difference between two submodular functions using a variational framework which is based on (an extension of) the concave-convex procedure [17]. Because several commonly used metrics in machine learning, like mutual information and conditional mutual information, are submodular, the problem of minimizing the difference of two submodular problems arises naturally in many machine learning applications. Two such applications are learning discriminatively structured graphical models and feature selection under computational complexity constraints. A commonly used metric for measuring discriminative capacity is the EAR measure which is the difference between two conditional mutual information terms. Feature selection taking complexity considerations into account also fall into this framework because both the information that a set of features provide and the cost of computing and using the features can be modeled as submodular functions. This problem is NPhard, and we give a polynomial time heuristic for it. We also present results on synthetic data to show that classifiers based on discriminative graphical models using this algorithm can significantly outperform classifiers based on generative graphical models.
منابع مشابه
Efficient Learning for Discriminative Segmentation with Supermodular Losses
Several non-modular loss functions have been considered in the context of image segmentation. These loss functions do not necessarily have the same structure as the segmentation inference algorithm, and in general, we may have to resort to generic submodular minimization algorithms for loss augmented inference. Although these come with polynomial time guarantees, they are not practical to apply...
متن کاملSubmodular Point Processes with Applications to Machine learning
We introduce a class of discrete point processes that we call the Submodular Point Processes (SPPs). These processes are characterized via a submodular (or supermodular) function, and naturally model notions of information, coverage and diversity, as well as cooperation. Unlike Log-submodular and Log-supermodular distributions (Log-SPPs) such as determinantal point processes (DPPs), SPPs are th...
متن کاملSubmodular Point Processes with Applications to Machine Learning: Extended Version
We introduce a class of discrete point processes that we call the Submodular Point Processes (SPPs). These processes are characterized via a submodular (or supermodular) function, and naturally model notions of information, coverage and diversity, as well as cooperation. Unlike Log-submodular and Log-supermodular distributions (Log-SPPs) such as determinantal point processes (DPPs), SPPs are th...
متن کاملAn Efficient Decomposition Framework for Discriminative Segmentation with Supermodular Losses
Several supermodular losses have been shown to improve the perceptual quality of image segmentation in a discriminative framework such as a structured output support vector machine (SVM). These loss functions do not necessarily have the same structure as the one used by the segmentation inference algorithm, and in general, we may have to resort to generic submodular minimization algorithms for ...
متن کاملSampling from Probabilistic Submodular Models
Submodular and supermodular functions have found wide applicability in machine learning, capturing notions such as diversity and regularity, respectively. These notions have deep consequences for optimization, and the problem of (approximately) optimizing submodular functions has received much attention. However, beyond optimization, these notions allow specifying expressive probabilistic model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005